Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells

نویسندگان

  • Xuege Wang
  • Sheng S. Li
  • S. Rawal
  • O. D. Crisalle
چکیده

Pulsed non-melt laser annealing (NLA) has been used for the first time to modify nearsurface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells. CIGS films deposited on Mo/glass substrates were annealed using a 25 ns pulsed 248 nm laser beam at selected laser energy density in the range 20–60mJ/cm and pulse number in the range 5–20 pulses. XRD peak narrowing and SEM surface feature size increase suggest near-surface structure changes. Dual-beam optical modulation (DBOM) and Hall-effect measurements indicate NLA treatment increases the effective carrier lifetime and mobility along with the sheet resistance. In addition, several annealed CdS/CIGS films processed by NLA were fabricated into solar cells and characterized by photoand dark-J–V and quantum efficiency (QE) measurements. The results show significant improvement in the overall cell performance when compared to unannealed cells. The results suggest that an optimal NLA energy density and pulse number for a 25 ns pulse width are approximately 30mJ/cm and 5 pulses, respectively. The NLA results reveal that overall cell efficiency of a cell processed from an see front matter r 2004 Elsevier B.V. All rights reserved. .solmat.2004.06.020 nding author. dress: [email protected] (S.S. Li).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process

Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...

متن کامل

Effect of Annealing on Physical Properties of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Applications

Cu2ZnSnS4 (CZTS) thin films were prepared by directly sputteringCu (In,Ga)Se2 quaternary target consisting of (Cu: 25%, Zn: 12.5%, Sn; 12.5%and S: 50%). The composition and structure of CZTS layers have beeninvestigated after annealing at 200 0C, 350 0C and 500 0C under vacuum. Theresults show that recrystallization of the CZTS thin film occurs and increasingthe grain size with a preferred orie...

متن کامل

Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals

This work presents the systematic studies of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 (CIGS) nanocrystals (NCs) embedded in poly(3-hexylthiophene) matrix. The CIGS NCs of approximately 17 nm in diameter were homogeneously blended with P3HT layer to form an active layer of a photovoltaic device. The blend ratios of CIGS NCs to P3HT, solvent effects on thin film morphologies,...

متن کامل

Laser applications in thin - film photovoltaics

We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be ...

متن کامل

Delft University of Technology Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer A 3-D optical study

A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005